Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data
نویسندگان
چکیده
BACKGROUND Measurement of intracardiac kinetic energy (KE) provides new insights into cardiac hemodynamics and may improve assessment and understanding of heart failure. We therefore aimed to investigate left ventricular (LV) KE time curves in patients with heart failure and in controls. METHODS Patients with heart failure (n = 29, NYHA class I-IV) and controls (n = 12) underwent cardiovascular magnetic resonance (CMR) including 4D flow. The vortex-ring boundary was computed using Lagrangian coherent structures. The LV endocardium and vortex-ring were manually delineated and KE was calculated as ½mv(2) of the blood within the whole LV and the vortex ring, respectively. RESULTS The systolic average KE was higher in patients compared to controls (2.2 ± 1.4 mJ vs 1.6 ± 0.6 mJ, p = 0.048), but lower when indexing to EDV (6.3 ± 2.2 μJ/ml vs 8.0 ± 2.1 μJ/ml, p = 0.025). No difference was seen in diastolic average KE (3.2 ± 2.3 mJ vs 2.0 ± 0.8 mJ, p = 0.13) even when indexing to EDV (9.0 ± 4.4 μJ/ml vs 10.2 ± 3.3 μJ/ml, p = 0.41). In patients, a smaller fraction of diastolic average KE was observed inside the vortex ring compared to controls (72 ± 6% vs 54 ± 9%, p < 0.0001). Three distinctive KE time curves were seen in patients which were markedly different from findings in controls, and with a moderate agreement between KE time curve patterns and degree of diastolic dysfunction (Cohen's kappa = 0.49), but unrelated to NYHA classification (p = 0.12), or 6-minute walk test (p = 0.72). CONCLUSION Patients with heart failure exhibit higher systolic average KE compared to controls, suggesting altered intracardiac blood flow. The different KE time curves seen in patients may represent a conceptually new approach for heart failure classification.
منابع مشابه
Test-retest variability of left ventricular 4D flow cardiovascular magnetic resonance measurements in healthy subjects
BACKGROUND Quantification and visualisation of left ventricular (LV) blood flow is afforded by three-dimensional, time resolved phase contrast cardiovascular magnetic resonance (CMR 4D flow). However, few data exist upon the repeatability and variability of these parameters in a healthy population. We aimed to assess the repeatability and variability over time of LV 4D CMR flow measurements. ...
متن کاملAltered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI
AIMS 4D flow magnetic resonance imaging (MRI) allows quantitative assessment of left ventricular (LV) function according to characteristics of the dynamic flow in the chamber. Marked abnormalities in flow components' volume and kinetic energy (KE) have previously been demonstrated in moderately dilated and depressed LV's compared to healthy subjects. We hypothesized that these 4D flow-based mea...
متن کامل4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease.
PURPOSE To investigate whether 4D flow magnetic resonance imaging (MRI) can detect subtle right ventricular (RV) dysfunction in primary left ventricular (LV) disease. MATERIALS AND METHODS 4D flow and morphological 3T MRI data were acquired in 22 patients with mild ischemic heart disease who were stratified into two groups based on LV end-diastolic volume index (EDVI): lower-LVEDVI and higher...
متن کاملThe Correlation between Left and Right Ventricular Ejection Fractions in Patients with Ischemic Heart Disease, Documented by Cardiac Magnetic Resonance Imaging
Introduction: The correlation between right and left ventricular ejection fractions (RVEF and LVEF, respectively) has been studied in only a small number of patients with a marked decrease in RVEF and LVEF. The aim of the present study was to compare LVEF and RVEF in patients with ischemic heart disease. RVEF and LVEF were measured by Cardiovascular Magnetic Resonance (CMR) imaging. Materials a...
متن کاملTurbulent kinetic energy from CMR identifies disturbed diastolic flow in myopathic left ventricles
Background Turbulent blood flow is a cause of energy loss in the cardiovascular system, and can thus be seen as a measure of flow inefficiency. Novel 4D flow CMR methods permit estimation of intracardiac turbulent kinetic energy (TKE). On the basis of the Reynolds number, one might expect that larger left ventricular (LV) size would promote higher TKE values, and thus lower flow efficiency. In ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2015